From Technologic Systems Manuals

The FPGA contains a SJA1000C compatible CAN controller that can be accessed using canctl which provides a CAN network service. Any application on the network can make use of this service to send or receive CAN packets using the API defined by canctl. Thus, it is possible to develop code written in other languages (java, python, etc.) and/or to run this code under other operating systems.

The canctl server is started by running:

Note: Due to a bug in some releases, daqctl will grab the IRQ before canctl. If CAN is unable to take the IRQ you can stop the daqctl process to reclaim it:
killall daqctl
canctl --server

The easiest interface to CAN is calling "canctl" through the command line:

canctl --port= --txdat=01:02:03:04:05:06
# canctl --help
Technologic Systems CAN controller manipulation.
-a | --address=ADR        CAN register address
-b | --baud=BAUD          CAN baud rate (7500 to 1000000)
-R | --peek8r             CAN register read
-W | --poke8w=VAL         CAN register write
-i | --txid=ID            CAN TX packet ID
-T | --txrtr              TX RTR packet
-d | --txdat=DAT          TX packet with data DAT
-s | --server==<port>     Daemonize and run as server
-D | --dump               Receive and print all CAN packets
-0 | --btr0=BTR0          SJA1000 BTR0 bus timing reg val
-1 | --btr1=BTR1          SJA1000 BTR1 bus timing reg val
-t | --txtest             Send TX test pattern
-r | --rxtest             Do RX test
-p | --port=<host><:port> Talk to canctl server
-S | --std                Send standard frame (not extended)
-v | --recover            Automatically recover from bus-off

The canctl application implements network CAN functionality using the can_rx_remote() and can_tx_remote() functions. These functions which read and write one fixed-size packet of struct canmsg to a TCP socket descriptor. Writing your own canctl client in the language of your choice is as simple as doing the same thing. The format of the each CAN packet sent or received via the network interface is described below. The terms "Rx" and "Tx" are relative to the client, so "Rx" would describe packets read from CAN over the network and "Tx" would describe packets written to CAN over the network.

 UINT32   flags:
          bit 7 - set on Tx if packet is a control packet
                  control packets are intercepted by the
                  canctl server to allow control functionality.
          bit 6 - set if message originates locally (unused)
          bit 5 - set if CAN message has extended ID
          bit 4 - set if remote transmission request (RTR)
          bit 3 - set on Rx if CAN error warning condition occurred
          bit 2 - set on Rx if CAN bus had a data overrun
          bit 1 - set on Rx if CAN bus went error passive
          bit 0 - set on Rx if a CAN bus error occurred
          Error conditions are reported for informational
          purposes.  The server normally handles these errors
          and recovers from them.
              control information present (reserved for future use)
              message originates from this node (unused)
 UINT32   CAN id
 UINT32   timestamp_seconds
 UINT32   timestamp_microseconds
 UINT32   bytes of CAN data which are valid
          if bit 7 of flags is set, this byte is instead interpreted
          as a command number:
            0 = set acceptance filter
              if the acceptance filter has been set, then only
              CAN packets which pass the filter will be received.
              to pass the filter, all bits in the acceptance filter
              which are to be checked (specified by a 1 in the
              corresponding bit of the mask) are compared (filter
              id compared to corresponding bit in received id).
              only if all bits to be checked do match will the
              packet be received.
 UINT8[8] CAN data
          if bit 7 of flags is set, this byte is instead interpreted
          as follows:
            cmd 0:
              UINT32 acceptance filter id
              UINT32 acceptance filter mask

UINT32 values are sent in little-endian format.

So for example, to send a standard CAN packet of length 6 with contents 01:02:03:04:05:06 and CAN id 55 it would be necessary to open a TCP connection to port 7552 on the device with the canctl server running, and the write the following packet to the socket:

  00 00 00 00 55 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 01 02 03 04 05 06 00 00